MinHashLSHModel��
-
class
pyspark.ml.feature.
MinHashLSHModel
(java_model=None)[source]�� Model produced by
MinHashLSH
, where where multiple hash functions are stored. Each hash function is picked from the following family of hash functions, where ai and bi are randomly chosen integers less than prime: hi(x)=((x⋅ai+bi)modprime) This hash family is approximately min-wise independent according to the reference.New in version 2.2.0.
Notes
See Tom Bohman, Colin Cooper, and Alan Frieze. ���Min-wise independent linear permutations.��� Electronic Journal of Combinatorics 7 (2000): R26.
Methods
approxNearestNeighbors
(dataset,��key,�����[,�����])Given a large dataset and an item, approximately find at most k items which have the closest distance to the item.
approxSimilarityJoin
(datasetA,��datasetB,�����)Join two datasets to approximately find all pairs of rows whose distance are smaller than the threshold.
clear
(param)Clears a param from the param map if it has been explicitly set.
copy
([extra])Creates a copy of this instance with the same uid and some extra params.
explainParam
(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap
([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Gets the value of inputCol or its default value.
Gets the value of numHashTables or its default value.
getOrDefault
(param)Gets the value of a param in the user-supplied param map or its default value.
Gets the value of outputCol or its default value.
getParam
(paramName)Gets a param by its name.
hasDefault
(param)Checks whether a param has a default value.
hasParam
(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined
(param)Checks whether a param is explicitly set by user or has a default value.
isSet
(param)Checks whether a param is explicitly set by user.
load
(path)Reads an ML instance from the input path, a shortcut of read().load(path).
read
()Returns an MLReader instance for this class.
save
(path)Save this ML instance to the given path, a shortcut of ���write().save(path)���.
set
(param,��value)Sets a parameter in the embedded param map.
setInputCol
(value)Sets the value of
inputCol
.setOutputCol
(value)Sets the value of
outputCol
.transform
(dataset[,��params])Transforms the input dataset with optional parameters.
write
()Returns an MLWriter instance for this ML instance.
Attributes
Returns all params ordered by name.
Methods Documentation
-
approxNearestNeighbors
(dataset, key, numNearestNeighbors, distCol='distCol')�� Given a large dataset and an item, approximately find at most k items which have the closest distance to the item. If the
outputCol
is missing, the method will transform the data; if theoutputCol
exists, it will use that. This allows caching of the transformed data when necessary.- Parameters
- dataset
pyspark.sql.DataFrame
The dataset to search for nearest neighbors of the key.
- key
pyspark.ml.linalg.Vector
Feature vector representing the item to search for.
- numNearestNeighborsint
The maximum number of nearest neighbors.
- distColstr
Output column for storing the distance between each result row and the key. Use ���distCol��� as default value if it���s not specified.
- dataset
- Returns
pyspark.sql.DataFrame
A dataset containing at most k items closest to the key. A column ���distCol��� is added to show the distance between each row and the key.
Notes
This method is experimental and will likely change behavior in the next release.
-
approxSimilarityJoin
(datasetA, datasetB, threshold, distCol='distCol')�� Join two datasets to approximately find all pairs of rows whose distance are smaller than the threshold. If the
outputCol
is missing, the method will transform the data; if theoutputCol
exists, it will use that. This allows caching of the transformed data when necessary.- Parameters
- datasetA
pyspark.sql.DataFrame
One of the datasets to join.
- datasetB
pyspark.sql.DataFrame
Another dataset to join.
- thresholdfloat
The threshold for the distance of row pairs.
- distColstr, optional
Output column for storing the distance between each pair of rows. Use ���distCol��� as default value if it���s not specified.
- datasetA
- Returns
pyspark.sql.DataFrame
A joined dataset containing pairs of rows. The original rows are in columns ���datasetA��� and ���datasetB���, and a column ���distCol��� is added to show the distance between each pair.
-
clear
(param)�� Clears a param from the param map if it has been explicitly set.
-
copy
(extra=None)�� Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters
- extradict, optional
Extra parameters to copy to the new instance
- Returns
JavaParams
Copy of this instance
-
explainParam
(param)�� Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
-
explainParams
()�� Returns the documentation of all params with their optionally default values and user-supplied values.
-
extractParamMap
(extra=None)�� Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
- extradict, optional
extra param values
- Returns
- dict
merged param map
-
getInputCol
()�� Gets the value of inputCol or its default value.
-
getNumHashTables
()�� Gets the value of numHashTables or its default value.
-
getOrDefault
(param)�� Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
-
getOutputCol
()�� Gets the value of outputCol or its default value.
-
getParam
(paramName)�� Gets a param by its name.
-
hasDefault
(param)�� Checks whether a param has a default value.
-
hasParam
(paramName)�� Tests whether this instance contains a param with a given (string) name.
-
isDefined
(param)�� Checks whether a param is explicitly set by user or has a default value.
-
isSet
(param)�� Checks whether a param is explicitly set by user.
-
classmethod
load
(path)�� Reads an ML instance from the input path, a shortcut of read().load(path).
-
classmethod
read
()�� Returns an MLReader instance for this class.
-
save
(path)�� Save this ML instance to the given path, a shortcut of ���write().save(path)���.
-
set
(param, value)�� Sets a parameter in the embedded param map.
-
transform
(dataset, params=None)�� Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters
- dataset
pyspark.sql.DataFrame
input dataset
- paramsdict, optional
an optional param map that overrides embedded params.
- dataset
- Returns
pyspark.sql.DataFrame
transformed dataset
-
write
()�� Returns an MLWriter instance for this ML instance.
Attributes Documentation
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')��
-
numHashTables
= Param(parent='undefined', name='numHashTables', doc='number of hash tables, where increasing number of hash tables lowers the false negative rate, and decreasing it improves the running performance.')��
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')��
-
params
�� Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.
-