
RFC 9729
The Concealed HTTP Authentication Scheme

Abstract
Most HTTP authentication schemes are probeable in the sense that it is possible for an
unauthenticated client to probe whether an origin serves resources that require authentication.
It is possible for an origin to hide the fact that it requires authentication by not generating
Unauthorized status codes; however, that only works with non-cryptographic authentication
schemes: cryptographic signatures require a fresh nonce to be signed. Prior to this document,
there was no existing way for the origin to share such a nonce without exposing the fact that it
serves resources that require authentication. This document defines a new non-probeable
cryptographic authentication scheme.

Stream: Internet Engineering Task Force (IETF)
RFC: 9729
Category: Standards Track
Published: January 2025
ISSN: 2070-1721
Authors: D. Schinazi

Google LLC
D. Oliver
Guardian Project

J. Hoyland
Cloudflare Inc.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9729

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Schinazi, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9729
https://www.rfc-editor.org/info/rfc9729
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

1.1. Conventions and Definitions

2. The Concealed Authentication Scheme

3. Client Handling

3.1. Key Exporter Context

3.1.1. Public Key Encoding

3.2. Key Exporter Output

3.3. Signature Computation

4. Authentication Parameters

4.1. The k Parameter

4.2. The a Parameter

4.3. The p Parameter

4.4. The s Parameter

4.5. The v Parameter

5. Example

6. Server Handling

6.1. Frontend Handling

6.2. Communication Between Frontend and Backend

6.3. Backend Handling

6.4. Non-Probeable Server Handling

7. Requirements on TLS Usage

8. Security Considerations

9. IANA Considerations

9.1. HTTP Authentication Schemes Registry

9.2. TLS Keying Material Exporter Labels

9.3. HTTP Field Name

3

3

4

4

4

6

6

6

7

8

8

8

8

8

8

9

9

9

10

11

11

12

12

12

13

13

RFC 9729 The Concealed HTTP Authentication Scheme January 2025

Schinazi, et al. Standards Track Page 2

10. References

10.1. Normative References

10.2. Informative References

Acknowledgments

Authors' Addresses

13

13

14

15

15

1. Introduction
HTTP authentication schemes (see) allow origins to restrict access for some
resources to only authenticated requests. While these schemes commonly involve a challenge
where the origin asks the client to provide authentication information, it is possible for clients to
send such information unprompted. This is particularly useful in cases where an origin wants to
offer a service or capability only to "those who know", while all others are given no indication
the service or capability exists. Such designs rely on an externally defined mechanism by which
keys are distributed. For example, a company might offer remote employee access to company
services directly via its website using their employee credentials or offer access to limited special
capabilities for specific employees while making discovering (or probing for) such capabilities
difficult. As another example, members of less well-defined communities might use more
ephemeral keys to acquire access to geography- or capability-specific resources, as issued by an
entity whose user base is larger than the available resources can support (by having that entity
metering the availability of keys temporally or geographically).

While digital-signature-based HTTP authentication schemes already exist (e.g.,), they rely
on the origin explicitly sending a fresh challenge to the client, to ensure that the signature input
is fresh. That makes the origin probeable as it sends the challenge to unauthenticated clients.
This document defines a new signature-based authentication scheme that is not probeable.

Section 11 of [HTTP]

[HOBA]

1.1. Conventions and Definitions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

This document uses the notation from .

Various examples in this document contain long lines that may be folded, as described in
.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

Section 1.3 of [QUIC]

[RFC8792]

RFC 9729 The Concealed HTTP Authentication Scheme January 2025

Schinazi, et al. Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc9110#section-11
https://www.rfc-editor.org/rfc/rfc9000#section-1.3

2. The Concealed Authentication Scheme
This document defines the "Concealed" HTTP authentication scheme. It uses asymmetric
cryptography. Clients possess a key ID and a public/private key pair, and origin servers maintain
a mapping of authorized key IDs to associated public keys.

The client uses a TLS keying material exporter to generate data to be signed (see Section 3) then
sends the signature using the Authorization (or Proxy-Authorization) header field (see

). The signature and additional information are exchanged using authentication
parameters (see Section 4). Once the server receives these, it can check whether the signature
validates against an entry in its database of known keys. The server can then use the validation
result to influence its response to the client, for example, by restricting access to certain
resources.

Section 11
of [HTTP]

3. Client Handling
When a client wishes to use the Concealed HTTP authentication scheme with a request, it
compute the authentication proof using a TLS keying material exporter with the following
parameters:

The label is set to "EXPORTER-HTTP-Concealed-Authentication".
The context is set to the structure described in Section 3.1.
The exporter output length is set to 48 bytes (see Section 3.2).

Note that TLS 1.3 keying material exporters are defined in , while TLS 1.2
keying material exporters are defined in .

SHALL

•
•
•

Section 7.5 of [TLS]
[KEY-EXPORT]

3.1. Key Exporter Context
The TLS key exporter context is described in Figure 1, using the notation from

:
Section 1.3 of

[QUIC]

RFC 9729 The Concealed HTTP Authentication Scheme January 2025

Schinazi, et al. Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc9110#section-11
https://www.rfc-editor.org/rfc/rfc8446#section-7.5
https://www.rfc-editor.org/rfc/rfc9000#section-1.3

Signature Algorithm:

Key ID:

Public Key:

Scheme:

Host:

Port:

Realm:

The key exporter context contains the following fields:

The signature scheme sent in the s Parameter (see Section 4.4).

The key ID sent in the k Parameter (see Section 4.1).

The public key used by the server to validate the signature provided by the client.
Its encoding is described in Section 3.1.1.

The scheme for this request, encoded using the format of the scheme portion of a URI
as defined in .

The host for this request, encoded using the format of the host portion of a URI as defined
in .

The port for this request, encoded in network byte order. Note that the port is either
included in the URI or is the default port for the scheme in use; see .

The realm of authentication that is sent in the realm authentication parameter (
). If the realm authentication parameter is not present, this be empty.

This document does not define a means for the origin to communicate a realm to the client. If
a client is not configured to use a specific realm, it use an empty realm and
send the realm authentication parameter.

The Signature Algorithm and Port fields are encoded as unsigned 16-bit integers in network byte
order. The Key ID, Public Key, Scheme, Host, and Realm fields are length-prefixed strings; they
are preceded by a Length field that represents their length in bytes. These length fields are
encoded using the variable-length integer encoding from and be
encoded in the minimum number of bytes necessary.

Figure 1: Key Exporter Context Format

 Signature Algorithm (16),
 Key ID Length (i),
 Key ID (..),
 Public Key Length (i),
 Public Key (..),
 Scheme Length (i),
 Scheme (..),
 Host Length (i),
 Host (..),
 Port (16),
 Realm Length (i),
 Realm (..),

Section 3.1 of [URI]

Section 3.2.2 of [URI]

Section 3.2.3 of [URI]

Section
11.5 of [HTTP] SHALL

SHALL SHALL NOT

Section 16 of [QUIC] MUST

RFC 9729 The Concealed HTTP Authentication Scheme January 2025

Schinazi, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc3986#section-3.1
https://www.rfc-editor.org/rfc/rfc3986#section-3.2.2
https://www.rfc-editor.org/rfc/rfc3986#section-3.2.3
https://www.rfc-editor.org/rfc/rfc9110#section-11.5
https://www.rfc-editor.org/rfc/rfc9110#section-11.5
https://www.rfc-editor.org/rfc/rfc9000#section-16

RSASSA-PSS algorithms:

ECDSA algorithms:

EdDSA algorithms:

3.1.1. Public Key Encoding

Both the "Public Key" field of the TLS key exporter context (see above) and the a Parameter (see
Section 4.2) carry the same public key. The encoding of the public key is determined by the
Signature Algorithm in use as follows:

The public key is an RSAPublicKey structure encoded in DER
. BER encodings which are not DER be rejected.

The public key is an UncompressedPointRepresentation structure defined in
, using the curve specified by the SignatureScheme.

The public key is the byte string encoding defined in .

This document does not define the public key encodings for other algorithms. In order for a
SignatureScheme to be usable with the Concealed HTTP authentication scheme, its public key
encoding needs to be defined in a corresponding document.

[PKCS1]
[X.690] MUST

Section 4.2.8.2 of [TLS]

[EdDSA]

Signature Input:

Verification:

3.2. Key Exporter Output
The key exporter output is 48 bytes long. Of those, the first 32 bytes are part of the input to the
signature and the next 16 bytes are sent alongside the signature. This allows the recipient to
confirm that the exporter produces the right values. This is described in Figure 2, using the
notation from :

The key exporter output contains the following fields:

This is part of the data signed using the client's chosen asymmetric private key
(see Section 3.3).

The verification is transmitted to the server using the v Parameter (see Section
4.5).

Section 1.3 of [QUIC]

Figure 2: Key Exporter Output Format

 Signature Input (256),
 Verification (128),

3.3. Signature Computation
Once the Signature Input has been extracted from the key exporter output (see Section 3.2), it is
prefixed with static data before being signed. The signature is computed over the concatenation
of:

A string that consists of octet 32 (0x20) repeated 64 times•

RFC 9729 The Concealed HTTP Authentication Scheme January 2025

Schinazi, et al. Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc8446#section-4.2.8.2
https://www.rfc-editor.org/rfc/rfc9000#section-1.3

The context string "HTTP Concealed Authentication"
A single 0 byte that serves as a separator
The Signature Input extracted from the key exporter output (see Section 3.2)

For example, if the Signature Input has all its 32 bytes set to 01, the content covered by the
signature (in hexadecimal format) would be:

The purpose of this static prefix is to mitigate issues that could arise if authentication asymmetric
keys were accidentally reused across protocols (even though this is forbidden, see Section 8). This
construction mirrors that of the TLS 1.3 CertificateVerify message defined in

.

The resulting signature is then transmitted to the server using the p Parameter (see Section 4.3).

•
•
•

Figure 3: Example Content Covered by Signature

20
20
48545450205369676E61747572652041757468656E7469636174696F6E
00
01

Section 4.4.3 of
[TLS]

4. Authentication Parameters
This specification defines the following authentication parameters.

All of the byte sequences below are encoded using base64url (see) without
quotes and without padding. In other words, the values of these byte-sequence authentication
parameters include any characters other than ASCII letters, digits, dash, and
underscore.

The integer below is encoded without a minus and without leading zeroes. In other words, the
value of this integer authentication parameter include any characters other than
digits and start with a zero unless the full value is "0".

Using the syntax from :

Section 5 of [BASE64]

MUST NOT

MUST NOT
MUST NOT

[ABNF]

Figure 4: Authentication Parameter Value ABNF

concealed-byte-sequence-param-value = *(ALPHA / DIGIT / "-" / "_")
concealed-integer-param-value = %x31-39 1*4(DIGIT) / "0"

RFC 9729 The Concealed HTTP Authentication Scheme January 2025

Schinazi, et al. Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc8446#section-4.4.3
https://www.rfc-editor.org/rfc/rfc4648#section-5

4.1. The k Parameter
The "k" (key ID) Parameter is a byte sequence that identifies which key the client
wishes to use to authenticate. This is used by the backend to point to an entry in a server-side
database of known keys; see Section 6.3.

REQUIRED

4.2. The a Parameter
The "a" (public key) Parameter is a byte sequence that specifies the public key used by
the server to validate the signature provided by the client. This avoids key confusion issues (see

). The encoding of the public key is described in Section 3.1.1.

REQUIRED

[SEEMS-LEGIT]

4.3. The p Parameter
The "p" (proof) Parameter is a byte sequence that specifies the proof that the client
provides to attest to possessing the credential that matches its key ID.

REQUIRED

4.4. The s Parameter
The "s" (signature) Parameter is an integer that specifies the signature scheme used to
compute the proof transmitted in the p Parameter. Its value is an integer between 0 and 65535
inclusive from the IANA "TLS SignatureScheme" registry maintained at <

>.

REQUIRED

https://www.iana.org/
assignments/tls-parameters/tls-parameters.xhtml#tls-signaturescheme

4.5. The v Parameter
The "v" (verification) Parameter is a byte sequence that specifies the verification that
the client provides to attest to possessing the key exporter output (see Section 3.2 for details).
This avoids issues with signature schemes where certain keys can generate signatures that are
valid for multiple inputs (see).

REQUIRED

[SEEMS-LEGIT]

5. Example
For example, the key ID "basement" authenticating using Ed25519 could produce the
following header field:

[ED25519]

RFC 9729 The Concealed HTTP Authentication Scheme January 2025

Schinazi, et al. Standards Track Page 8

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-signaturescheme
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-signaturescheme

Figure 5: Example Header Field

NOTE: '\' line wrapping per RFC 8792

Authorization: Concealed \
 k=YmFzZW1lbnQ, \
 a=VGhpcyBpcyBh-HB1YmxpYyBrZXkgaW4gdXNl_GhlcmU, \
 s=2055, \
 v=dmVyaWZpY2F0aW9u_zE2Qg, \
 p=QzpcV2luZG93c_xTeXN0ZW0zMlxkcml2ZXJz-ENyb3dkU\
 3RyaWtlXEMtMDAwMDAwMDAyOTEtMD-wMC0w_DAwLnN5cw

6. Server Handling
In this section, we subdivide the server role in two:

The "frontend" runs in the HTTP server that terminates the TLS or QUIC connection created
by the client.
The "backend" runs in the HTTP server that has access to the database of accepted key
identifiers and public keys.

In most deployments, we expect both the frontend and backend roles to be implemented in a
single HTTP origin server (as defined in). However, these roles can be split
such that the frontend is an HTTP gateway (as defined in) and the backend
is an HTTP origin server.

•

•

Section 3.6 of [HTTP]
Section 3.7 of [HTTP]

6.1. Frontend Handling
If a frontend is configured to check the Concealed authentication scheme, it will parse the
Authorization (or Proxy-Authorization) header field. If the authentication scheme is set to
"Concealed", the frontend validate that all the required authentication parameters are
present and can be parsed correctly as defined in Section 4. If any parameter is missing or fails to
parse, the frontend ignore the entire Authorization (or Proxy-Authorization) header field.

The frontend then uses the data from these authentication parameters to compute the key
exporter output, as defined in Section 3.2. The frontend then shares the header field and the key
exporter output with the backend.

MUST

MUST

6.2. Communication Between Frontend and Backend
If the frontend and backend roles are implemented in the same machine, this can be handled by
a simple function call.

If the roles are split between two separate HTTP servers, then the backend won't be able to
directly access the TLS keying material exporter from the TLS connection between the client and
frontend, so the frontend needs to explicitly send it. This document defines the "Concealed-Auth-
Export" request header field for this purpose. The Concealed-Auth-Export header field's value is a

RFC 9729 The Concealed HTTP Authentication Scheme January 2025

Schinazi, et al. Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc9110#section-3.6
https://www.rfc-editor.org/rfc/rfc9110#section-3.7

Structured Field Byte Sequence (see) that contains the 48-
byte key exporter output (see Section 3.2), without any parameters. Note that Structured Field
Byte Sequences are encoded using the non-URL-safe variant of base64. For example:

The frontend forward the HTTP request to the backend, including the original unmodified
Authorization (or Proxy-Authorization) header field and the newly added Concealed-Auth-Export
header field.

Note that, since the security of this mechanism requires the key exporter output to be correct,
backends need to trust frontends to send it truthfully. This trust relationship is common because
the frontend already needs access to the TLS certificate private key in order to respond to
requests. HTTP servers that parse the Concealed-Auth-Export header field ignore it unless
they have already established that they trust the sender. Similarly, frontends that send the
Concealed-Auth-Export header field ensure that they do not forward any Concealed-Auth-
Export header field received from the client.

Section 3.3.5 of [STRUCTURED-FIELDS]

Figure 6: Example Concealed-Auth-Export Header Field

NOTE: '\' line wrapping per RFC 8792

Concealed-Auth-Export: :VGhpc+BleGFtcGxlIFRMU/BleHBvcn\
 Rlc+BvdXRwdXQ/aXMgNDggYnl0ZXMgI/+h:

SHALL

MUST

MUST

6.3. Backend Handling
Once the backend receives the Authorization (or Proxy-Authorization) header field and the key
exporter output, it looks up the key ID in its database of public keys. The backend then
perform the following checks:

validate that all the required authentication parameters are present and can be parsed
correctly as defined in Section 4
ensure the key ID is present in the backend's database and maps to a corresponding public
key
validate that the public key from the database is equal to the one in the Authorization (or
Proxy-Authorization) header field
validate that the verification field from the Authorization (or Proxy-Authorization) header
field matches the one extracted from the key exporter output
verify the cryptographic signature as defined in Section 3.3

If all of these checks succeed, the backend can consider the request to be properly authenticated
and can reply accordingly (the backend can also forward the request to another HTTP server).

If any of the above checks fail, the backend treat it as if the Authorization (or Proxy-
Authorization) header field was missing.

SHALL

•

•

•

•

•

MUST

RFC 9729 The Concealed HTTP Authentication Scheme January 2025

Schinazi, et al. Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc8941#section-3.3.5

6.4. Non-Probeable Server Handling
Servers that wish to introduce resources whose existence cannot be probed need to ensure that
they do not reveal any information about those resources to unauthenticated clients. In
particular, such servers respond to authentication failures with the exact same response
that they would have used for nonexistent resources. For example, this can mean using HTTP
status code 404 (Not Found) instead of 401 (Unauthorized).

The authentication checks described above can take time to compute, and an attacker could
detect use of this mechanism if that time is observable by comparing the timing of a request for a
known nonexistent resource to the timing of a request for a potentially authenticated resource.
Servers can mitigate this observability by slightly delaying responses to some nonexistent
resources such that the timing of the authentication verification is not observable. This delay
needs to be carefully considered to avoid having the delay itself leak the fact that this origin uses
this mechanism at all.

Non-probeable resources also need to be non-discoverable for unauthenticated users. For
example, if a server operator wishes to hide an authenticated resource by pretending it does not
exist to unauthenticated users, then the server operator needs to ensure there are no
unauthenticated pages with links to that resource and no other out-of-band ways for
unauthenticated users to discover this resource.

MUST

7. Requirements on TLS Usage
This authentication scheme is only defined for uses of HTTP with TLS . This includes any
use of HTTP over TLS as typically used for HTTP/2 , or HTTP/3 where the
transport protocol uses TLS as its authentication and key exchange mechanism .

Because the TLS keying material exporter is only secure for authentication when it is uniquely
bound to the TLS session , the Concealed authentication scheme requires either one of
the following properties:

The TLS version in use is greater than or equal to 1.3 .

The TLS version in use is 1.2, and the extended master secret extension has been
negotiated.

Clients use the Concealed authentication scheme on connections that do not meet one
of the two properties above. If a server receives a request that uses this authentication scheme
on a connection that meets neither of the above properties, the server treat the request as
if the authentication were not present.

[TLS]
[HTTP/2] [HTTP/3]

[QUIC-TLS]

[RFC7627]

• [TLS]

• [RFC7627]

MUST NOT

MUST

RFC 9729 The Concealed HTTP Authentication Scheme January 2025

Schinazi, et al. Standards Track Page 11

8. Security Considerations
The Concealed HTTP authentication scheme allows a client to authenticate to an origin server
while guaranteeing freshness and without the need for the server to transmit a nonce to the
client. This allows the server to accept authenticated clients without revealing that it supports or
expects authentication for some resources. It also allows authentication without the client
leaking the presence of authentication to observers due to cleartext TLS Client Hello extensions.

Since the freshness described above is provided by a TLS key exporter, it can be as old as the
underlying TLS connection. Servers can require better freshness by forcing clients to create new
connections using mechanisms such as the GOAWAY frame (see).

The authentication proofs described in this document are not bound to individual HTTP
requests; if the key is used for authentication proofs on multiple requests on the same
connection, they will all be identical. This allows for better compression when sending over the
wire, but it implies that client implementations that multiplex different security contexts over a
single HTTP connection need to ensure that those contexts cannot read each other's header
fields. Otherwise, one context would be able to replay the Authorization header field of another.
This constraint is met by modern web browsers. If an attacker were to compromise the browser
such that it could access another context's memory, the attacker might also be able to access the
corresponding key, so binding authentication to requests would not provide much benefit in
practice.

Authentication asymmetric keys used for the Concealed HTTP authentication scheme
be reused in other protocols. Even though we attempt to mitigate these issues by adding a static
prefix to the signed data (see Section 3.3), reusing keys could undermine the security guarantees
of the authentication.

Origins offering this scheme can link requests that use the same key. However, requests are not
linkable across origins if the keys used are specific to the individual origins using this scheme.

Section 5.2 of [HTTP/3]

MUST NOT

9. IANA Considerations

Authentication Scheme Name:

Reference:

Notes:

9.1. HTTP Authentication Schemes Registry
IANA has registered the following entry in the "HTTP Authentication Schemes" registry
maintained at < >:

Concealed

RFC 9729

None

https://www.iana.org/assignments/http-authschemes

RFC 9729 The Concealed HTTP Authentication Scheme January 2025

Schinazi, et al. Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc9114#section-5.2
https://www.iana.org/assignments/http-authschemes

Value:

DTLS-OK:

Recommended:

Reference:

9.2. TLS Keying Material Exporter Labels
IANA has registered the following entry in the "TLS Exporter Labels" registry maintained at
< >:

EXPORTER-HTTP-Concealed-Authentication

N

Y

RFC 9729

https://www.iana.org/assignments/tls-parameters#exporter-labels

Field Name:

Status:

Structured Type:

Reference:

Comments:

9.3. HTTP Field Name
IANA has registered the following entry in the "Hypertext Transfer Protocol (HTTP) Field Name
Registry" maintained at < >:

Concealed-Auth-Export

permanent

Item

RFC 9729

None

https://www.iana.org/assignments/http-fields/http-fields.xhtml

10. References

[ABNF]

[BASE64]

[EdDSA]

[HTTP]

10.1. Normative References

 and ,
, , , , January 2008,

.

, , ,
, October 2006, .

 and ,
, , , January 2017,

.

, , and , ,
, , , June 2022,

.

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:
ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://
www.rfc-editor.org/rfc/rfc5234>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/rfc/rfc4648>

Josefsson, S. I. Liusvaara "Edwards-Curve Digital Signature Algorithm
(EdDSA)" RFC 8032 DOI 10.17487/RFC8032 <https://www.rfc-
editor.org/rfc/rfc8032>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD
97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/rfc/
rfc9110>

RFC 9729 The Concealed HTTP Authentication Scheme January 2025

Schinazi, et al. Standards Track Page 13

https://www.iana.org/assignments/tls-parameters#exporter-labels
https://www.iana.org/assignments/http-fields/http-fields.xhtml
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc4648
https://www.rfc-editor.org/rfc/rfc8032
https://www.rfc-editor.org/rfc/rfc8032
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110

[KEY-EXPORT]

[PKCS1]

[QUIC]

[RFC2119]

[RFC7627]

[RFC8174]

[RFC8792]

[STRUCTURED-FIELDS]

[TLS]

[URI]

[X.690]

, ,
, , March 2010,
.

, , , and ,
, , ,

November 2016, .

 and ,
, , , May 2021,

.

, , ,
, , March 1997,
.

, , , , and ,

, , , September 2015,
.

, ,
, , , May 2017,

.

, , , and ,
, , , June

2020, .

 and , ,
, , February 2021,

.

, , ,
, August 2018, .

, , and ,
, , , , January 2005,

.

,

, , ,
February 2021.

Rescorla, E. "Keying Material Exporters for Transport Layer Security (TLS)"
RFC 5705 DOI 10.17487/RFC5705 <https://www.rfc-editor.org/rfc/
rfc5705>

Moriarty, K., Ed. Kaliski, B. Jonsson, J. A. Rusch "PKCS #1: RSA
Cryptography Specifications Version 2.2" RFC 8017 DOI 10.17487/RFC8017

<https://www.rfc-editor.org/rfc/rfc8017>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and
Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://
www.rfc-editor.org/rfc/rfc9000>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/rfc/
rfc2119>

Bhargavan, K., Ed. Delignat-Lavaud, A. Pironti, A. Langley, A. M. Ray
"Transport Layer Security (TLS) Session Hash and Extended Master Secret
Extension" RFC 7627 DOI 10.17487/RFC7627 <https://www.rfc-
editor.org/rfc/rfc7627>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/rfc/
rfc8174>

Watsen, K. Auerswald, E. Farrel, A. Q. Wu "Handling Long Lines in
Content of Internet-Drafts and RFCs" RFC 8792 DOI 10.17487/RFC8792

<https://www.rfc-editor.org/rfc/rfc8792>

Nottingham, M. P. Kamp "Structured Field Values for HTTP" RFC
8941 DOI 10.17487/RFC8941 <https://www.rfc-editor.org/rfc/
rfc8941>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/rfc/rfc8446>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):
Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/rfc/rfc3986>

ITU-T "Information technology - ASN.1 encoding Rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)" ITU-T Recommendation X690 ISO/IEC 8825-1:2021

[ED25519]

10.2. Informative References

 and ,
, ,

, August 2018, .

Josefsson, S. J. Schaad "Algorithm Identifiers for Ed25519, Ed448, X25519,
and X448 for Use in the Internet X.509 Public Key Infrastructure" RFC 8410 DOI
10.17487/RFC8410 <https://www.rfc-editor.org/rfc/rfc8410>

RFC 9729 The Concealed HTTP Authentication Scheme January 2025

Schinazi, et al. Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc5705
https://www.rfc-editor.org/rfc/rfc5705
https://www.rfc-editor.org/rfc/rfc8017
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc7627
https://www.rfc-editor.org/rfc/rfc7627
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8792
https://www.rfc-editor.org/rfc/rfc8941
https://www.rfc-editor.org/rfc/rfc8941
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc8410

[HOBA]

[HTTP/2]

[HTTP/3]

[MASQUE-ORIGINAL]

[QUIC-TLS]

[SEEMS-LEGIT]

, , and ,
, , , March 2015,

.

 and , , ,
, June 2022, .

, , , , June 2022,
.

, , ,
, 28 February 2019,

.

 and , , ,
, May 2021, .

, , , and ,
,

, , ,
November 2019, .

Farrell, S. Hoffman, P. M. Thomas "HTTP Origin-Bound Authentication
(HOBA)" RFC 7486 DOI 10.17487/RFC7486 <https://www.rfc-
editor.org/rfc/rfc7486>

Thomson, M., Ed. C. Benfield, Ed. "HTTP/2" RFC 9113 DOI 10.17487/
RFC9113 <https://www.rfc-editor.org/rfc/rfc9113>

Bishop, M., Ed. "HTTP/3" RFC 9114 DOI 10.17487/RFC9114 <https://
www.rfc-editor.org/rfc/rfc9114>

Schinazi, D. "The MASQUE Protocol" Work in Progress Internet-Draft,
draft-schinazi-masque-00 <https://datatracker.ietf.org/doc/
html/draft-schinazi-masque-00>

Thomson, M., Ed. S. Turner, Ed. "Using TLS to Secure QUIC" RFC 9001 DOI
10.17487/RFC9001 <https://www.rfc-editor.org/rfc/rfc9001>

Jackson, D. Cremers, C. Cohn-Gordon, K. R. Sasse "Seems Legit:
Automated Analysis of Subtle Attacks on Protocols That Use Signatures" CCS '19:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security pp. 2165-2180 DOI 10.1145/3319535.3339813

<https://doi.org/10.1145/3319535.3339813>

Acknowledgments
The authors would like to thank many members of the IETF community, as this document is the
fruit of many hallway conversations. In particular, the authors would like to thank

, , , , , ,
, , , , and for their reviews and

contributions. The mechanism described in this document was originally part of the first
iteration of MASQUE .

David
Benjamin Reese Enghardt Nick Harper Dennis Jackson Ilari Liusvaara François Michel Lucas
Pardue Justin Richer Ben Schwartz Martin Thomson Chris A. Wood

[MASQUE-ORIGINAL]

Authors' Addresses
David Schinazi
Google LLC
1600 Amphitheatre Parkway

, Mountain View CA 94043
United States of America

dschinazi.ietf@gmail.comEmail:

David M. Oliver
Guardian Project

david@guardianproject.infoEmail:
https://guardianproject.infoURI:

RFC 9729 The Concealed HTTP Authentication Scheme January 2025

Schinazi, et al. Standards Track Page 15

https://www.rfc-editor.org/rfc/rfc7486
https://www.rfc-editor.org/rfc/rfc7486
https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc9114
https://datatracker.ietf.org/doc/html/draft-schinazi-masque-00
https://datatracker.ietf.org/doc/html/draft-schinazi-masque-00
https://www.rfc-editor.org/rfc/rfc9001
https://doi.org/10.1145/3319535.3339813
mailto:dschinazi.ietf@gmail.com
mailto:david@guardianproject.info
https://guardianproject.info

Jonathan Hoyland
Cloudflare Inc.

jonathan.hoyland@gmail.comEmail:

RFC 9729 The Concealed HTTP Authentication Scheme January 2025

Schinazi, et al. Standards Track Page 16

mailto:jonathan.hoyland@gmail.com

	RFC 9729
	The Concealed HTTP Authentication Scheme
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions

	2. The Concealed Authentication Scheme
	3. Client Handling
	3.1. Key Exporter Context
	3.1.1. Public Key Encoding

	3.2. Key Exporter Output
	3.3. Signature Computation

	4. Authentication Parameters
	4.1. The k Parameter
	4.2. The a Parameter
	4.3. The p Parameter
	4.4. The s Parameter
	4.5. The v Parameter

	5. Example
	6. Server Handling
	6.1. Frontend Handling
	6.2. Communication Between Frontend and Backend
	6.3. Backend Handling
	6.4. Non-Probeable Server Handling

	7. Requirements on TLS Usage
	8. Security Considerations
	9. IANA Considerations
	9.1. HTTP Authentication Schemes Registry
	9.2. TLS Keying Material Exporter Labels
	9.3. HTTP Field Name

	10. References
	10.1. Normative References
	10.2. Informative References

	Acknowledgments
	Authors' Addresses

